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ALEXANDRI

Who are we? A]__q) C

Alexandria Quantum Computing Group (AleQCG) has
been at the forefront of quantum computing research in
Egypt since 2016.

AleQCG has started by the PhD and Master Students.

AleQCG is currently a vibrant community of passionate
Individuals dedicated to advancing quantum computing
knowledge, research, and applications.
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Our Mission A]__(p G

Research: We aim to drive real-world impact by promoting quantum
research and its practical applications.

Education: We provide workshops, seminars, and hands-on sessions
to demystify quantum concepts and algorithms.

Innovation: Explore cutting-edge developments in quantum software,
and applications.

Collaboration: Connect with like-minded peers, industry experts, and
academia to foster collaboration and knowledge exchange.

Community Services: Engage with the broader community through
outreach programs, public lectures, and educational initiatives to raise
awareness and understanding of quantum technologies.
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Overview

AleQCG is located in Department of Mathematics and Computer Science, Faculty of Science Alexandria University and has collaboration with researchers from:

School of Computer Science. University of Birmingham, United Kingdom.

Computer and Information Science Department, Universiti Teknologi PETRONAS, Malaysia.

Mathematics Department. Zewail City of Science and Technology, Egypt.

Department of Physics, Faculty of Science. Al-Azhar University. Egypt.

College of Computing and Information Technology. Arab Academy for Science. Technology & Maritime Transport. Egypt.

Egypt-Japan University of Science and Technology. Egypt.

Department of Mathematics and Computer Science, Damanhour University. Egypt.

Department of Information Technology, Institute of Graduate Studies and Research. Alexandria University, Egypt. o
Department of Mathematics, Faculty of Education, Alexandria University.
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Faculty

Prof. Ahmed Younes

Professor

Dr. Shaimaa A. EImorsy
Assistant Professor

Dr. Manal Samir Khawaik
Assistant Professor

Dr. Ashraf Elsayed
Associate Professor

Dr. Islam Elkabani
Assistant Professor

Dr. Rasha Montaser

Assistant Professor Dr. Mohamed Osman

Assistant Professor

P, Dr. Ahmed Moustafa Dr. Doaa A. Shoieb
.—‘ Assistant Professor Assistant Professor

PhD Students

Sahar Saleh
PhD student

Mirna Hosny
Teaching Assistant

Taghreed Ebed
Teaching Assistant

Mohamed Shaban
PhD Student{(USA)

Menna El-Masry
Teaching Assistant

Norhan Nasr
Teaching Assistant

Mariam Medhat
PhD Student (USA)

Sara Anwer
Teaching Assistant




Master Students

Mohamed Montaser
Researcher

Islam Elgendy
Researcher

Omar Akram Shalabi
Researcher

Moataz Fayek
Researcher

Mousa Ahmed Mustafa
Researcher

Omar Wael
Researcher

Mohamed Youssef
Researcher

Muhammad Akram Shalabi
Researcher

Omar Sengab
Researcher

Basma Elias Doha Abd El-Fattah Esraa Ahmed

Demonstrator Demonstrator MSc Researcher
Monica Magdy .
MSc Researcher XA MO Ahmed Saad El Fiky

MSc Researcher
Researcher
Professtional Master Students
.

Ahmed M. Ellamie
Researcher

Ola Walid Shalaby
Researcher



Members of AleQCG Affiliations

Alexandria University
Damanhour University

Arab Academy for Science, Technology, and Maritime
Transport

Suez Canal University
Cairo University
Alamein International University

Alexandria Higher Institute of Engineering and
Technology
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Research in AleQCG

Quantum Search Algorithms.

Amplitude Amplification Techniques.

Quantum Machine Learning.

Synthesis and Optimization of Reversible/ Quantum Circuits.
Quantum Data Encoding.

Quantum Image Processing.

Quantum Cryptography.

Quantum Logic.

Quantum Measurements.

Quantum dot Cellular Automata.

Quantum Internet.

Merging between Quantum Computing and DNA Computing.



AleQCG Focus

Quantum Algorithms: AleQCG designs novel quantum algorithms to
address complex computational problems, leveraging the unique properties
of quantum systems.

Quantum Circuit Synthesis and Optimization: The group
conducts pioneering research in optimizing quantum and reversible circuits,
ensuring efficient utilization of quantum resources.

Quantum Machine Learning: AleQCG explores the intersection of
quantum computing and machine learning, aiming to unlock new capabilities
through quantum-enhanced models.

Quantum Cryptography: investigating secure communication
protocols based on quantum principles, AleQCG contributes to the field of
quantum-safe cryptography.



Education and Community
Outreach
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AlexU-QCWS21
Alexandria Quantum Computmg Winter School, 1-5 February 2021
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Invited Talks

itle:Quantum Game Theory: The Quest for Optimal Quantum Technology

Speaker:Faisal Shah Khan

.

ALEXANDRIA

[Title:An Introduction to Quantum Machine Learning.
i

mmalea Aalin ALLL L

[itle:Quantum computing in Africa.

Speaker:Farai Mazhandu

Title:Non-Classical Computing Problems: Toward Novel Type of Quantum Computing Problems

Speaker:Dr, Mohamed Zidan

Title:A Gentle Introduction to the Quantum Approximate Optimization Algorithm

Speaker:Zoltan Zimboras

Time:1:00 PM to 1:45 PM
Title:The Application of Quantum Annelaing to Solving VRP and its Variants.

Speaker:Bio Pawel Gora

Mic=2:2.00 DAL 4~ 2.48 DAL

Title:Quantum Machine Learning with PennyLane

Speaker:Thomas Bromlev

Title:*Superconducting Qubit Architecture™

Speaker:Nick bronn

Time:5:00 PM to 5:45 PM

Graduate Research Fellowship. Nick joined IBM Quantum as a post-doctoral researcher in 2013.

squantum applications, and education of the quantum community at large.

A fter earning his Ph.D. in Condensed Matter Physics from the University of Illinois. supported in part by a National Science Foundation

Continuing as a Research Staff Member since 2015. he has been responsible for developing and integrating quantum hardware and
\deploying quantum systems over the cloud, and now focuses on enabling Qiskit on different hardware platforms, hardware-focused
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Sahar Ben Rached

Jakob Kottmann

Quantum Computing Research Intern

Karlsruhe Institute of Technology Efficient Representations of Digital Images on
Quantum Computers

Postaectors Felow # The Matter Lab Toronto

University Of Toronto
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Center of Excellence for Quantum Computers, Faculty
of Science, Alexandria University, 2020
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CENTER OF EXCELLENCE FOR QUANTUM COMPUTERS

In Cooperation with

Quantum Computing and Information Group, Theoretical Physics
Department, Wigner Research Centre for Physics, Budapest, Hungary.

Quantum Al Foundation, The Warsaw Quantum Computing Group,
Faculty of Mathematics, Computer Science, and Mechanics, University of
Warsaw, Banacha 2, 02-097 Warszawa, Poland.

ITI — Information Technology Institute, Alexandria, Egypt.
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Inroduction to Quanium 1-Quantum Computing - Introduction | AleQCG
Computing
PRRARE . Anmed Younes « 11K views - 5 years ago

2- Quantum Computing - Basics of Quantum Computing | AleQCG

Aened Youst Ahmed Younes « 5.8K views « 5 years sgo

ALEQC ~:~ @ 3- Quantum Computing - Linear Algebra for QC | AleQCG

R - Ahmed Younes « 4.6K views « 5 years ago

ALEQG ~ =& 4- Quantum Computing- Quantum Measurement and Entanglement | AleQCG

Gunrtion Mossummttorn need Eree dormint
Ahmed Younes » 3.4K views + 5 years ago

ALZQ-G ~'@ 5- Quantum Computing - Single Qubit Gates | AleQCG
Single QU Gites
Ahmed Younes » 3.1K views - 5 years ago

https://www.youtube.com/playlist?list=PLkpYgKNqgc Cud5sL.g896FsnbkoQiHlkpZ
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Software and Simulators

AlexQkit is an interactive quantum simulator that is used to visualize and simulate quantum computing. The
quantum circuits can be exported to run on [BMQ devices.. AlexQkit has been developed as a graduation
project under the supervision of Prof. Anmed Younes and Eng. Kareem H. El-Safty in 2020 from Department of
Mathematics and Computer Science, Faculty of Science, Alexandria University by Mario Monir, Freddie Samy,
Mohamed Hassan, and Mohamed Hamdy.

Javantum is an interactive quantum simulator that is used to visualize and simulate quantum computing on
classical computers. It is purely developed using Java 8 based on the interactive guantum computer simulator
jaQuzzi 0.1 . Javantum has been developed as a graduation project from Department of Mathematics and
Computer Science, Faculty of Science, Alexandria University in 2016 by Fatimah Ahmed, Yehya Beram,
Muhammad Al-Alem, Muhammad Kamal, Muhammad Mahmoud, Muhammad Salah and Nayera Ali under the
supervision of Dr. Ahmed Younes.




AlexQkit, 2020

O Product ~ Solutions ~  Open Source ¥ Pricing /| Signin | Signup |

A MarioMonir / AlexQkit | public £ Notifications Y Fork D & Star 0
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No description, website, or topics provided,
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Quantum Computer Simulator Contributors 5
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Abstract 0 %@

The guantum simulator AlexQhit is built with several features to facilitate the operations for the users, Those features
help the user to view and edit Qasm code, Further, one can deduce quantum circuits from Boolean algebra Languages
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Javantum1.0, 2016
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gworld.net
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QWorld (Association) is a non-profit global
organization that brings quantum
computing researchers & enthusiasts
together.

Our main goal is to popularize quantum
technologies and software.

Also, through education and skill
development opportunities, QWorld is
training the next generation of quantum
scientists.
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QEgypt is founded in April 2021 by the main pillars of the Alexandria Quantum Computing Group (at Faculty of Science, Alexandria University)
that abides by the law of the Ministry of Higher Education in Egypt. The main advantage of those pillars is that Alexandria Quantum Computing

Group has members from different academic backgrounds and universities. QEgypt is established on embracing innovative ideas and the strong

belief of communicating the revolution of Quantum Computing to the community.

The main goal is to create a more engaging and fruitful environment for creating new quantum educational material and a strong research base
that can help researchers and universities in academia and also pave the way for new industrial adopters of quantum technologies. Our diverse
team below is eager to widen its circle of connections and open to collaborations in different research areas within the field of quantum

information science.

We invite you to our social media channels!

QWORLD v




CWORLD

OBronze

The introductory level workshop series on the basics of quantum computing and quantum programming.

(. )WORLD

ONickel

The elementary level workshop series on quantum computing and programming focusing on oracular quantum algorithms.

CIWORLD ) \'i( \
QSilver 3 /\%

The intermediate level workshop series on quantum computing and programming. ' _ ) ' \'/
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€) QAfrica C)WORLD
Workshop

Basics of quantum computing and programming

i

QBronze14/ | Quantum Computing and Programming Workshop, Online, December 2-6,
2024

For the first time, leading experts from nine African QCousins — QSouthAfrica, QLibya, QNigeria, QCameroon, QAlgeria, QEgypt,
QMorocco, QZimbabwe and QGhana - come together in a groundbreaking workshop. This pioneering event fosters cross-border
collaboration, knowledge sharing, and collective growth, paving the way for a stronger, more resilient Africa.

We are pleased to announce the first quantum programming workshop organized jointly by QAfrica and QWorld! Join us for the
introductory workshop and learn the basics of quantum computing and how to write simple quantum programs.

We invite highschool students, university students and graduates, researchers, professors, and industry experts. We will use introductory
tutorials called Bronze-Qiskit by QWorld. We will use Discord to communicate with each other and conduct the workshop. Jupyter
notebooks, lectures, and mentoring will be in English. We will also provide mentoring in a few other languages.




~Never forget, the words are not the reality,\"

sonly.reality is reality.

https://www.fb.com/QuEqgypt

@ QEgypt

ﬁ @QuEgypt - Educational Research Center 2" Edit Learn more

Hor

QEgypt

QEgypt is affiliated with QWorld collaborating on education and implementation of Quantum
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The fir ® Male  oliabo in Quantum Computing & Quantum Programming
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under the guidance of leading institutions.

See caption for link
5 0 0 SIS S t u d en t S Deadiine to submit your application: June 20, 2025
60+ Egyptian Universities
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https://gworld.net/acourse110-1/
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BIBLIOTHECA ALEXANDRINA |
SEPTEMBER 3-5, 2025

Welcome to the Alexandria Quantum Hackathon—first-ever quantum
hackathon hosted by the Bibliotheca Alexandrina and designed to spark the
future of tech, science, and innovation nght here in Alex!

https://qguantum.bibalex.orqg/




Quantum Computer Programming for High School
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Quantum Computer Programming for Beginners
For high school students, freshmen and sophomore
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Quantum Computing and
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36 Credits

Mandatory Courses: 15 Cr.
Elective Courses: 15 Cr.
Project: 6 Cr

Cover All required background
Mathematics
Computer Science
Physics
Engineering
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Core Courses
15 Cr + 6 Cr Research Project

Course Title
Basics of Computer Programming
Introduction to Probability and Statistics

Computer Algorithms and Models of Computations

Introduction to Quantum Mechanics
Introduction to Quantum Computing
Project
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Elective Courses
15 Cr

Course Title

Quantum Circuits

Reversible Computing

Quantum Algorithms

Quantum Machine Learning

Quantum Communications and Cryptography
Quantum Information Theory

Quantum Error-Correction

Quantum Image Processing

Quantum Dot Cellular Automata
Adiabatic Quantum Computing
Nanoelectronics for Quantum Computing
Quantum Hardware

Photonic Quantum Computing
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About the Africa Quantum
Consortium (AQC)

AQC: Built With These Leaders

Vision

To ina

Prof. Andrew Forbes Youssouf Traore Prof. Mourad Telmini

, driving and
of quantum technologies
on the continent.

Dr. Happy Sithole Riche-Mike Wellington Prof. Deji Akinwande

Mission Coordination Team

To guantum technology
in Africa through

Farai Mazhandu

Dr. Taha Roubah Prof. Ahmed Younes Temitope Adeniyi
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Phumzile Madonsela Prof. Sonia Haddad Dorcas Attuabea Addo Prof. Ahmadou Wague
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Quantum City Prize

World and Continental Quantum City Prize

Key Information

The Quantum City Prize rewards initiatives bringing Quantum Sclence ond Technology to the public space of @ city, For example,
placing posters in the public transport network of the city, or organising an activity in a square of the city, etc

The ideq is thot the public should not have to register in an event, or have to travel to a venue, 1o access the corresponding
contents, but will find it serendipitously in the city.

Prizes ore divided into 3 categories
e cities with less than 100 000 inhabitants

o cities with a population larger than 100 000 inhabitants, and smaller than 1 000 000 inhabitants

e cities with more than 1 000 000 inhobitants
INTERNATIONAL YEAR OF

Quantum Science
and Technology

https://worldquantumday.org/quantum-city-prize




AleQCG Research Focus

Quantum Algorithms: AleQCG designs novel quantum algorithms to
address complex computational problems, leveraging the unique properties
of quantum systems.

Quantum Circuit Synthesis and Optimization: The group
conducts pioneering research in optimizing quantum and reversible circuits,
ensuring efficient utilization of quantum resources.

Quantum Machine Learning: AleQCG explores the intersection of
quantum computing and machine learning, aiming to unlock new capabilities
through quantum-enhanced models.

Quantum Cryptography: investigating secure communication
protocols based on quantum principles, AleQCG contributes to the field of
quantum-safe cryptography.



Quantum Algorithms
Quantum Algorithms Filter by publication year range:2014 to 2023

A e .
df:’l Scival
0 0 “‘b.;d:‘ |
Top countries/regions

Entity: Quantum Algorithms . Within: All subject areas (THE) . Region: Africa - Year range: 2014 to 2023 .
Data source: Scopus, up to 06 Nov 2024

Scholarly Views Field-Weighted Citation Citation

Countries & territories Output <) Count Impact Count
Egypt 223 6,687 1.90 4,026
South Africa 100 3,290 1.74 3,692
Algeria 85 1,511 1.18 794
Morocco 49 1,281 0.58 287
Tunisia 35 739 1.321 423
Nigeria 23 654 0.74 289
Ghana 10 456 2.35 283
Senegal 10 120 0.30 19
Cameroon 7 21 0.25 27

Ethiopia 7 185 1.58 49




Quantum Algorithms

Quantum Algorithms Filter by publication year range:2014 to 2023 SRS

Top Institutions
Entity: Quantum Algorithms . Within: All subject areas (THE) - Region: Africa . Year range: 2014 to 2023 .
Data source: Scopus, up to 06 Nov 2024

Scholarly  Views  Field-Weighted Citation

Institution Output +» Count  Citation Impact Count
Alexandria University 44 863 0.98 384
University of the Witwatersrand 36 1,690 0.85 416
University of KwaZulu-Natal 33 1,097 3.30 3,062
Al-Azhar University 30 885 1.81 579
Menoufia University 27 834 3.41 973
Mohammed V University in Rabat 22 790 0.67 139
Sohag University 21 582 2.15 496
Ain Shams University 20 672 0.88 267
University of Science and Technology Houari 20 373 0.93 224

Boumediene

Cairo University 19 765 1.66 369



Quantum Computer; Grover Algorithm; Computational Complexity T.3993

Quantum Computer; Grover Algorithm; Computational Complexity T.3993 1&
Filter by publication year range:2014 to 2023 i {i’ Scival

Top countries(regions
Entity: Quantum Computer; Grover Algorithm; Computational Complexity T.3993 - Within: All subject areas
(THE) - Region: Africa - Year range: 2014 to 2023 . Data source: Scopus, up to 06 Nov 2024

Scholarly Views Field-Weighted Citation Citation

Countries & territories Qutput +»  Count Impact Count
Egypt 17 309 1.25 218
Nigeria g 79 0.36 30
South Africa 5 97 0.81 56
Morocco 3 24 0.00 1
Tunisia 3 23 0.07 7
Algeria 2 19 1.10 5
Libya 2 25 0.49 4
Cameroon 1 3 0.00 0

Ethiopia 1 15 2.25 2



Quantum Computer; Grover Algorithm; Computational Complexity T.3993

Quantum Computer; Grover Algorithm; Computational Complexity T.3993 e
Filter by publication year range:2014 to 2023 Q-’J‘Exg» Scival

Top Institutions
Entity: Quantum Computer; Grover Algorithm; Computational Complexity T.3993 . Within: All subject areas
(THE) - Region: Africa - Year range: 2014 to 2023 . Data source: Scopus, up to 06 Nov 2024

Scholarly ~ Views  Field-Weighted Citation

Institution Output ~ Count  Citation Impact Count
Alexandria University 6 79 0.17 25
Zewail City of Science and Technology 5 26 164 87
Al-Azhar University 4 93 0.44 57
Kano University of Science and Technology 4 43 0.28 4
Sohag University 4 84 0.26 15
Ain Shams University 3 56 1.07 27
Mansoura University 3 73 4.67 103
Mohammed V University in Rabat 3 24 0.00 1
Abubakar Tafawa Balewa University, Bauchi 2 11 0.87 26

The British University in Egypt 2 35 1.28 15



Logic Gate; Quantum Computer; Theory of Computation T.7121

Logic Gate; Quantum Computer; Theory of Computation T.7121

Filter by publication year range:2014 to 2023 : - Scival

Top countries/regions
Entity: Logic Gate; Quantum Computer; Theory of Computation T.7121 . Within: All subject areas (THE) -
Region: Africa - Year range: 2014 to 2023 . Data source: Scopus, up to 06 Nov 2024

Scholarly Views Field-Weighted Citation Citation

Countries & territories Output v  Count Impact Count
Egypt 14 313 0.74 78
Algeria 7 150 0.67 22
Tunisia - 68 0.21 16
Morocco 2 18 0.00 0
Nigeria 2 100 0.98 31

Ethiopia 1 18 0.55 7



Logic Gate; Quantum Computer; Theory of Computation T.7121

Logic Gate; Quantum Computer; Theory of Computation T.7121
Filter by publication year range:2014 to 2023 "2‘%1‘*@?‘

Jaf:g' Scival
Top Institutions

Entity: Logic Gate; Quantum Computer; Theory of Computation T.7121 - Within: All subject areas (THE) -
Region: Africa - Year range: 2014 to 2023 . Data source: Scopus, up to 06 Nov 2024

Scholarly  Views Field-Weighted  Citation

Institution Output -\ Count Citation Impact Count
Alexandria University 12 292 0.54 75
University of Sidi-Bel-Abbes 4 95 0.34 6
Fréres Mentouri Constantine 1 University 3 55 1.10 16
University of Monastir 3 58 0.11 11
University of Sousse 3 66 0.28 16
Abdelmalek Essaidi University 2 18 0.00 0
Academy of Scientific Research and 2 23 0.26 4
Technology

Al-Azhar University 2 107 1.33 31
Damanhour University 2 34 0.46 6

Ibn Tofail University 2 18 0.00 0



Quantum Cryptography; Secret Sharing; Authentication T.4450

Quantum Cryptography; Secret Sharing; Authentication T.4450
Filter by publication year range:2014 to 2023

Top countries/regions

Entity: Quantum Cryptography; Secret Sharing; Authentication T.4450 -
Region: Africa - Year range: 2014 to 2023 .

\"*‘A

C.o
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%».

Within: All subject areas (THE) -
Data source: Scopus, up to 06 Nov 2024

Scholarly Views Field-Weighted Citation Citation
Countries & territories Output *»  Count Impact Count
Egypt 30 527 1.19 527
Morocco 6 98 1.27 82
South Africa 4 78 1.70 202
Algeria 2 11 0.30 9
Botswana 1 6 0.61 4
Ethiopia 1 8 2.81 1
Tunisia 1 7 131 8

Scival



Quantum Computer; Image Processing; Steganography T.35465

Quantum Computer; Image Processing; Steganography T.35465 :ff}}f?@g Scival
R0 § U
Filter by publication year range:2014 to 2023 J;L&,

Top countries/regions

Entity: Quantum Computer; Image Processing; Steganography T.35465 - Within: All subject areas (THE) -
Region: Africa - Year range: 2014 to 2023 - Data source: Scopus, up to 06 Nov 2024

Scholarly Views Field-Weighted Citation Citation
Countries & territories Output & Count Impact Count
Egypt 31 652 1.84 866
Tunisia 3 47 0.19 6
Algeria 2 36 0.47 11
Morocco 2 54 0.36 10
Ghana 1 9 0.00 1

South Africa 1 31 0.54 20



Neural Network; Quantum Computer; Artificial Intelligence T.27147

Neural Network; Quantum Computer; Artificial Intelligence T.27147

Filter by publication year range:2014 to 2023

Top countries/regions

Entity: Neural Network; Quantum Computer; Artificial Intelligence T.27147 - Within: All subject areas (THE) -

Region: Africa - Year range: 2014 to 2023 - Data source: Scopus, up to 06 Nov 2024

Scholarly Views Field-Weighted Citation Citation
Countries & territories Output + Count Impact Count
Egypt 10 207 2.63 282
Cameroon 2 53 0.45 23
Maorocco 1 20 0.25 3
South Africa 1 20 0.26 4



Quantum Computer; Machine Learning; Mathematical Optimization T.1516

Quantum Computer; Machine Learning; Mathematical Optimization T.1516 §§ |
Filter by publication year range:2014 to 2023 i {i’ Sciva

Top countries/regions
Entity: Quantum Computer; Machine Learning; Mathematical Optimization T.1516 - Within: All subject areas
(THE) - Region: Africa - Year range: 2014 to 2023 . Data source: Scopus, up to 06 Nov 2024

Scholarly Views Field-Weighted Citation Citation

Countries & territories Output *»  Count Impact Count
South Africa 40 1,040 3.55 3,312
Egypt 12 337 2.26 236
Algeria 11 150 0.65 30
Morocco 9 173 1.23 a0
Ghana 4 55 1.95 68
Migeria 3 40 0.06 1
Ethiopia 2 33 0.00 0
Angola 1 1 0.00 0

Botswana 1 7 3.95 11



Quantum Search
Algorithms and Amplitude
Amplification Techniques



Unstructured Search Problem

Consider an unstructured list L of NV items.

For simplicity and without loss of generality we will assume
that NV = 2" for some positive integer n.

Suppose the items in the list are labelled with the integers {0,
1,...,N—1}, and consider a function (oracle) f which maps
an item i € L to either 0 or 1 according to some properties
this item should satisfy, 1.e. f: L — {0, 1}.

The problem 1s to find any i € L such that f(i) = 1 assuming
that such i exists in the list.



Grover’s Quantum Search Algorithm

Given a List L of N=2" items

Step 1 — Prepare a superposition on N items on O(log N)
Step 2 — lterate the Amplitude Amplification foro(\/ﬁ)
Step 3- Measure the quantum register

Classical Computers require O(N) iteration.

0) -2 gon

Grover diffusion operator
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Repeat O(v'N) times



Quantum Circuit for Grover’s algorithm
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Example: Search for 7.
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Example: Search for 7.
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Example: Search for 7.
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1st Iteration




Example: Search for 7.
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Example: Search for 7.
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Example: Search for 7.
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Example: Search for 7.
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Employs a Partial Diffusion Operator and entanglement to
enhance search efficiency in unstructured lists.

Operates in O(YN/M) time complexity, demonstrating improved
reliability and performance, particularly when multiple
(unknown) matches are present.

An oracle function to map items in the list, creating entanglement

between solution and non-solution subspaces.

More robust against de-amplification effects, maintaining a
higher probability of finding solutions.



Partial Diffusion and Entanglement
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Initialization
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Superposition
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After 1st [teration
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Itr 2: Apply U:;
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Abstract

The quantum search algorithm consists of an alternating sequence
of selective inversions and diffusion type operations, as a result of
which it can find a target state in an unsorted database of size N in
only "N queries. This paper shows that by replacing the selective in-
versions by selective phase shifts of £, the algorithm gets transformed
into something similar to a classical search algorithny, Just like clas-
sical search algorithms the algorithm has a fixed point in state-space
toward which it preferentially converges. In contrast, the guantum
search algorithm moves uniformly in a two-dimensional state space.
This feature leads to robust search algorithms and also to conceptu-
ally new schemes for error correction.

arXiv:quant-ph/0503205v1 28 Mar 2005

1 Introduction

The quantum search algorithm is like baking a soufile .
vou have to stop at just the right time or else it gets burnt [1]

Search algorithms can be deseribed as a rotation of the state vector in
2-dimensional Hilbert space defined by the initial and the target vectors.
As we deseribe later. any iterative gquantum procedure has to be a contin-
uos rotation in state space. In the original quantum search algorithm. the
state vector uniformly goes from the initial to the target and unless we stop

*Research was partly supported by NSA & ARO under contract DAAGSHS-98-C-0040.

https://arxiv.org/abs/quant-ph/0503205



the same transformation. In amplitude amplification {2}, exactly the same
transformation is repeated and o unitarity does not permit any fxed point.
In the phase shift algorithm {4}, which is very similar to amplitude amplifi-
cation, the transformation repeated in each step is slightly different due to
the presence of each of the four operations R,. R,, R, R} and it hence gets
around the unitarity condition that prevents amplitude amplification from
having a fixed point.

5 Quantum searching amidst uncertainty

The original quantum search algorithm is known to be the best possible
algorithm for exhaustive searching [6], [7] therefore no algorithm will be able
to improve its performance. However, for applications other than exhaustive
searching for a single item, this paper demonstrates that suitably modified
algorithms may indeed provide better performance.

Consider the situation where a large fraction of the states are marked.
but the precise fraction of marked states is not known. The goal is to find a
single marked state with as high a probability as possible in a single query.
For concreteness, say some unknown fraction, f | of the states are marked,
with f uniformly distributed between 75% and 100% with equal probability.

In the following we show that the probability of failure for the new scheme
is anproximatelv one fourth that of the best (nossible) classical scheme. Also.

Quantum Searching The best quantum search based algorithm for this

problem that I could find in the literature was by Ahmed Younes et al [12].
sin?(g+1)60 + sin? g6
sin® @ sin?f ) °

This finds a solution with a probability of (1 — cos#é)

problem that 1 could find in the literature was by Ahmed Younes et al [12].
This finds a solution with a probability of (1 ~ cos#) (M } %‘!g) :

sin® @ win

6
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Objective: The study investigates the effectiveness of three quantum
search algorithms—Grover’s, partial diffusion, and fixed-phase
algorithms—in classifying patterns in a three-qubit system.

Results: The partial diffusion operator outperformed the other
algorithms in incomplete superposition input states, achieving a
100% probability of correct classification in certain iterations.
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Objective: Proposes a quantum algorithm to minimize test
suites in software engineering.

Method: Utilizes amplitude amplification and two quantum
search algorithms to efficiently find the minimum number of
test cases needed to cover all requirements.

Outcome: Achieves high probability solutions in O(v2”n) time,
enhancing software testing efficiency and reducing
redundancy in test cases.
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Highlights

The paper presents four quantum algorithms for set operations on
Boolean functions: True Intersection, False Intersection,
Difference, and Union.

Algorithms utilize amplitude amplification techniques, achieving
O(+/N) time complexity.

Proposed algorithms outperform classical methods and enhance
applications in database systems, cryptography, and machine
learning.
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Highlights

Objective: Propose a Quantum Answer Set Programming
Solver (QASP) for NP-hard combinatorial search problems.

Methodology: Reduces problems to MAX-3-SAT, solved
using quantum algorithms with O(v2"/m) steps.

Advantages: Outperforms classical solvers and quantum
annealing in efficiency and scalability.



Hamiltonian cycle problem

Th
a§

XC 1 The aim of this problem is to place N aueens on an N x N

SAT (Boolean Satisfiability)

N-queen problem

A Boolean formula 1s a logical expression that 1s composed of
Boolean literals, logical operators such as AND. OR, and NOT,
parentheses to group expressions and clauses, where each
clause 1s a disjunction of literals (a variable or 1ts negation).

An n mput k-CNF Boolean formula,

g o




f(zo,T1,29) = co Ac1 Aea Acs,

where,

(
(—llfo V L1 V J-"Q)ﬁ
— (.L'() V-V -l-"?.)-
= (_;1_70 V L1 V I?_)a

T

s
)
=

P
) 5]

GTA GT: G

ol
!
b

Vs
]
r

3

]
" E U Uy
. Dp
: *,,
1 & T s i
! $ &
‘ & | F M)

Faaly

Figure : Quantum circuit for the proposed solver



Information Sciences 181 (2011) 329-334

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins s

Enhancing the security of quantum communication by hiding
the message in a superposition
A. Younes
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Highlights
Quantum State Hiding of specific quantum states in superpositions,
enhancing the security of encrypted messages during transmission.

Fast Process as the hiding and unhiding process is efficient, with a time
complexity of O(1) for preparing a single qubit message.

Eavesdropping Resistance to Guarantee that any eavesdropper has a
maximum chance of 25% to correctly guess the hidden message, ensuring
high security.

Flexible Protocol because the transmission protocol allows for the use of

multiple quantum channels and can be combined with existing encryption
algorithms for improved security.
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Hiding quantum states
Dy = (W2 ©11)(210)(0] - ) (W @ 1),
7
=) olk) = Z“J ) ©10)) +Eﬂj 11)).
k=0

where {2 = d; : k even} and {f; = o, : k odd}. Applying D, on [) gives,

7 7
Dyl¥) =Dy ) aulk) = (W2 @ 1) 210)(0| - ls) (W2 © 1) 3 dulk)

k=0

3 3
= (2(o) - o4)(i) ®10)) = Y _ B;(li) ® 1)),
j=0 j=0



Showing hidden states
G = W3(2|0)(0] — I, )W*?,

3
W) =Y ali).
J=0
Applying the Grover's operator, G, on |J) gives,

3
Giy) = > [~ +2(x]l),
J=0

where, (%) =137 ,% is the mean of the amplitudes of the states in
the superposition,

oy — [—oy + 2(x)].
To understand the purpose of using G, consider the following cases:

1- If the system is in the form,

W) =5(100) + 101) + [10) + 1)),

then (%) = L and applying G has no effect on the system.
2- If the system is in the form,

W) = |x),
suchthatx ¢ {00.01,10,11) then (%) = 1.

3- If the system is in the form,

1
W) —ﬁ(lx) =),
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A Secured Quantum Two-Bit Commitment
Protocol for Communication Systems
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Focus: Proposes a secure quantum two-bit commitment protocol
involving a committer (Alice) and a receiver (Bob) using quantum and
classical channels.

Key Phases: Commitment and revealing phases ensuring binding
and concealing conditions.

Security: Utilizes quantum states in superposition and unitary
transformations to prevent cheating and eavesdropping.

Verification: Success verified by comparing outputs from both
parties.
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Protocol Design: Uses a two—gubit state for encoding,
with one qubit for the data and the other for the
measurement basis. A partial diffusion operator hides the
qubit state.

Security Against Collective Attacks: Utilizes unitary
transformations and the partial diffusion operator to
prevent undetected interception and measurement.

Performance and Efficiency: Achieves a high ratio of
key bits to qubits, enhancing practical efficiency.



Main stages of the QKD protocol. The two parties share a quantum communication channel
for key exchange, in addition to an authorized classical channel.
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The circuit implementation of the forward direction in the proposed QKD protocol.

Table 4. Comparison of proposed half-duplex bidirectional QKD protocol.

Lin et al. Protocol Pan et al. Protocol Proposed Protocol
Initial quantum Reflection single Two-physical qubit Sypexpesifion of “’.""
resource photons entangled state i et
a GHZ state
Number of initial Two Three Two

quantum states
. R ‘1 1 1
Qubit efficiency ot 15 11




Synthesis and Optimization of
Quantum Circuits
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Representation of Boolean quantum circuits as Reed—Muller expansions

AHMED YOUNES* and JULIAN F. MILLERT

In this paper we show that there 1s a direct correspondence between Boolean
quantum operations and certain forms of classical (non-quantum) logic known
as Reed-Muller expansions. This allows us to readily convert Boolkean circuits
into their quantum equivalents. A direct result of this is that the problem of
synthesis and optumization of Boolean quantum circuits can be tackled within
the field of Reed-Muller logic.
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Boolean Quantum Circuits
f = Toxr1 + zpI0

Digital circuit
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Two-qubits Boolean Circuits
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Applications of Partial Negation
Operator



The Partial Negation Operator

Let X be the Pauli-X gate

g 1 0> 2 |1>
A I N e A o

The ¢t partial negation operator V is the ¢t root of

the X gate and can be calculated using diagonalization
as follows,

. 1| 14+t 1—t
V:\/')?:5

P e

where t = /—1, and applying V for d times on a qubit is
equivalent to the operator,

- 1 opeg® J—qgt

b | =

1= Jpgs

such that if d = ¢, then V4 = X.



Scaling the Negation
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Quantum Image Processing
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Abstract

Quantum image processing is the use of quantum computing to store. transmit. and process
digital images on quantum computers. This paper introduces two enhanced quantum image
representations to store quantum images. The first enhanced quantum representation based
on the flexible representation for quantum images (EFRQI) is an amplitude representation
that uses the partial negation operator to store the values of the pixels of 2" x 2" image in
the amplitudes of the qubits. The second enhanced quantum representation based on the
novel enhanced quantum representation of digital images (ENEQR) is a basis state rep-
resentation that uses the CNOT gate to store the values of the pixels in a qubit sequence.
The proposed methods have better time complexity and quantum cost when compared with
related models in the literature.

Keywords Quantum image processing - Quantum mechanics - Digital images - Quantum
image representation



Representations of Digital Images on Quantum
Computers
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Fig. An example of 2 X 2 image and its representation with the FRQI model

FRQI : Flexible representation of quantum images.



Quantum RGB Pixel
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Data Encoding
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Preparation of Quantum Superposition
Using Partial Negation
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* ABSTRACT The preparation of a quantum superposition is the key to the success of many quantum
algorithms and quantum machine learning techniques. The preparation of an incomplete or a non-uniform
quantum superposition with certain properties is a non-trivial task. In this paper. an n-qubits variational
quantum circuit using partial negation and controlled partial negation operators is proposed to prepare
a quantum superposition from a given space of probability distributions. The speed of the preparation
process and the accuracy of the prepared superposition has special importance to the success of any quantum
algorithm. The proposed method can be used to prepare the required quantum superposition in &(n) steps
and with high accuracy when compared with relevant methods in literature.

- INDEX TERMS Quantum superposition, quantum state. partial negation, data encoding, prepared
amplitudes, acquired amplitudes.



Preparation of Complete
Superposition
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Preparation of Incomplete
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Preparation of Quantum Superposition Using Partial Negation
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The Variational Circuit

Algorithm 1 Quantum State Preparation Algorithm

Given a system |¢¥), and the vector of amplitudes

1: Initialize |ak) in state |0)

2: Prepare |¢) = (|¥) ® |ak))

3: Let AcquiredAmplitude = a'= ||

4: Let AcquiredGates=|]

5: Apply K with unknown parameters on |ir) 6: Then apply
Ck on [¢)

7: The amplitudes of |¢) is required to solve the system of
equations

8: Solve the system of non-linear equations generated by
steps 1 to 7 using Levenberg-Marquardt algorithm

9: Save the result from the system in AcquiredGates

10: Apply the gates on the state |¢)

1 1: Calculate the AcquiredAmplitude using eq.(10)

12: Measure the accuracy of the method by using the relative
error

— K *

)
)

lx2) — K3 i
y K | {K5 - Ke |— |ak)

1 5 Cp Cog Ci0
Kl = ’ K3 = ) KS =

€2 € c6 Cs cl0 €9

Cog S 7 c7 C c C12
K= | 4 = 7 8 g - 11 1 :

€4 €3 cg 7| €12 ¢

Quantum circuit with unknown rt# roots for 3 qubits.



States Prepared Amplitudes Acquired Amplitudes Relative Error
Equal States | —0.2500 + 0.2500:[0) | —0.2500 + 0.2500i|0} | 6.9593 x 10~
(complex values) | +0.2500 0.2500i|1) | +0.2500 + 0.2500¢|1}

+0.2500 + 0.2500¢(2) | +0.2500 + 0.2500i|2)
+0.2500 — 0.2500¢(3) | +0.2500 — 0.2500i|3)
+0.2500 + 0.2500i|4; | +0.2500 + 0.2500i |4)
+0.2500 0.25004|5) | +0.2500 0.2500i |5}
+0.2500 — 0.2500{|6) | +0.2500 — 0.2500i|6)
—0.2500 — 0.2500{|7) | —0.2500 — 0.2500{|7)
Decreasing States | —0.1500 + 0.5100{|0) | —0.1503 + 0.5103:|0) | 7.5342 % 10 4
(complex values) +0.4400 + 0.1200:[1) | +0.4404 + 0.1222i|1)
+0.3680 0.1110i|2) | +0.3698 + 0.1089i|2)
+0.0900 0.3200¢|3) | +0.0885 0.3190i |3)
+0.2920 + 0.0920i|4) | +0.2918 + 0.0900i|4)
+0.0760 — 0.2500¢|5) | +0.0733 — 0.2519i|5)
+0.0610 — 0.2130i|6) | +0.0652 — 0.2114i|6)
0.1830 0.0510i|7) 0.1825 0.0531i|7;
Increasing States | —0.1830 — 0.0510i|0) | —0.182 — 0.0507i|0) | 2.5487 x 10 *
(complex values) F0.0610 0.2130i|1} | +0.0631 0.2108i (1)
+0.0760 — 0.2500i|2) | +0.0713 — 0.2515i|2)
+0.2920 + 0.0920:(3} | +0.2914 + 0.0887i|3)
+0.0900 — 0.3200i|4) | +0.0869 — 0.3185:|4)
+0.3680 + 0.1110:|5) | +0.3691 + 0.1083i|5}
F0.4400 + 0.1200i|6) | +0.4402 0.1223i|6)
—0.1500 + 0.5100{|7) | —0.1524 + 0.5101i|7)




The Space of Probability Distributions using the rth Root
over 3 Qubits
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Comparison between the complexity of the proposed method
and the other algorithms where n is number of qubits.

Algorithm Circuit Depth | No.of auxiliary qubit
Equal State O(n’) -
Prime State G (n?) -
Universal Gate &(2") -
The Sequential Algorithm O'(n?) o(n)
QAE €' (n) o(n)
The Proposed Method & (n) (1)




Reading Quantum Data
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Reading a single qubit system using weak
measurement with variable strength
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Ahmed Younes*

Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Egypt
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HIGHLIGHTS

o Propose a quantum algorithm to read a qubit without applying sharp measurement.
e Areversal weak measurement is used to decrease the introduced disturbance.

e Amplitudes move in a random walk manner with a reversal effect.

o The strength of weak measurement can be controlled using dummy (virtual) qubits.




Reading the Contents of a Single
QY

utgllttis usually read using sharp measurement.

Sharp measurement is irreversible operation.

Given a qubit |¢)) with unknown ¢ as follows,
[9) = cos (9)0) +sin (6) 1)

projective measurement will make the qubit collapses to either
0) with probability cos?(¢)
or to |1) with probability sin®(¢).



The Algorithm - Simplified
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Measurement
Based

Quantum
Random Walks
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The scale of the measurement process is based upon the number of steps that the random
walk should move starting from Pry (|¢)) = cos® () to reach after j > 1 steps to

Pr; (|to)) = 1 — € for small € > 0, so .
j
tan (00) 5 Al €.

Pr; (|4)) = tan? (@) + tan®27 (6p) ~

then, ., log(tan®(¢)(==))
A] 2 log(tan®(fo))

log(tan®(p) (%))
= log(cos?(8,))—log(cos?(8o))’

: (41
and since ) = ﬁf_—,‘, and 6; = %ﬂ%l then

1—¢

; log(tang(cp)(T))
Aj > e p
(r) - (44552)
2 )
> (2) log (tan? (¢) (==)) (2u+1).
and since ¢ is unknown, then assume ¢ = % as an upper bound for the totalnumber
of steps j and so the scale of the measurement process is.

jproj 2 %(A])z
> 2 (log (tan? (3) (£==)) (2u + 1))2
(1) .

IV
S



Correctness of Weak Measurement

Fig. . .
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Quantum State Discrimination
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Abstract

The quantum state discrimination problem is to distinguish between non-orthogonal
quantum states. This problem has many applications in quantum information theory,
quantum communication and quantum cryptography. In this paper. a quantum algo-
rithm using weak measurement and partial negation will be proposed to solve the
quantum state discrimination problem using a single copy of an unknown qubit. The
usage of weak measurement makes it possible to reconstruct the qubit after measure-
ment since the superposition will not be destroyed due to measurement. The proposed
algorithm will be able to determine, with high probability of success, the state of the
unknown qubit and whether it is encoded in the Hadamard or the computational basis
by counting the outcome of the successive measurements on an auxiliary qubit.

Keywords Quantum state discrimination - Quantum algorithm - Weak
measurement - Partial negation - Computational basis - Hadamard basis



Quantum State Discrimination

Problem Statement

Given a qubit |¢») which is promised to be in one of the following four states
10), |11), |+) and |—) where, |£) = 7‘,-2-(|0) + |1)). It is required to deter-
mine the state of |¢') using a single copy and whether it is encoded in the
Hadamard or the computational basis. The probabilities that the unknown
qubit |¢’) is in one of the previously mentioned four states when measured in
the computational or the Hadamard basis is shown in Table (1).

Measurement using | Measurement using
1) computational Hadamard
basis basis
10) 100% 50%
1) 100% 50%
) 50% 100%
|—) 50% 100%

Table 1: Probailities that an unknown qubit |¢) is in state |0), |1), |+) or
|—) when measured in the computational or the Hadamard basis.
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Figure : Three sample runs for the random walks for each of the considered
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Table. The percentages of success and failure after 10% trials for determining the state of |y), when it is assumed to be in the Hadamard or the computational basis, in
addition to the total percentage of success for determining [¥) when [) = |0), |¥) = |+) represented in Table (a) and |¥) = |1), |¥) = |+) represented in Table (b)

¥) =10) V) = [+)
(a)
Actual basis Computational basis Hadamard basis
Assumed basis Hadamard basis Computational basis Hadamard basis Computational basis
Transformation H ) No transformation H ) No transformation
applied
% of tnals =~ 44.953% >~ 55.047% ~ 45.498% =~ 54.502%
transformation is
applied based on
Uapprox
Correctness for Success: Failure: Success: Failure: Success: Failure: Success: Failure:
determining ~ 22 645% ~ 22.226% >~ 55.047% ~ 0.029% ~ 45.498% >~ 0.026% ~27.192% ~ 27.24%
Total % of success =~ 77.656%
¥) =11) ) =1|-)
(b)
Actual basis Computational basis Hadamard basis
Assumed basis Hadamard basis Computational basis Hadamard basis Computational basis
Transformation H |r) No transformation H\¥) No transformation
applied
% of tnals ~ 45.060% =~ 54.940% >~ 45.200% ~ 54.801%
transformation is
applied based on
Uapprox
Correctness for Success: Failure: Success: Failure: Success: Failure: Success: Failure:
determining |y) >~ 22.526% >~ 22.464% >~ 54.936% ~0.021% >~ 45.199% >~ 0.03% >~ 27.408% ~ 27.324%

otal % of success ~ 77.462%
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